Biophysical and molecular mechanisms of Shaker potassium channel inactivation.

نویسندگان

  • T Hoshi
  • W N Zagotta
  • R W Aldrich
چکیده

The potassium channels encoded by the Drosophila Shaker gene activate and inactivate rapidly when the membrane potential becomes more positive. Site-directed mutagenesis and single-channel patch-clamp recording were used to explore the molecular transitions that underlie inactivation in Shaker potassium channels expressed in Xenopus oocytes. A region near the amino terminus with an important role in inactivation has now been identified. The results suggest a model where this region forms a cytoplasmic domain that interacts with the open channel to cause inactivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slow inactivation in voltage gated potassium channels is insensitive to the binding of pore occluding peptide toxins.

Voltage gated potassium channels open and inactivate in response to changes of the voltage across the membrane. After removal of the fast N-type inactivation, voltage gated Shaker K-channels (Shaker-IR) are still able to inactivate through a poorly understood closure of the ion conduction pore. This, usually slower, inactivation shares with binding of pore occluding peptide toxin two important ...

متن کامل

Contribution of the selectivity filter to inactivation in potassium channels.

Voltage-gated K+ channels exhibit a slow inactivation process, which becomes an important influence on the rate of action potential repolarization during prolonged or repetitive depolarization. During slow inactivation, the outer mouth of the permeation pathway undergoes a conformational change. We report here that during the slow inactivation process, the channel progresses through at least th...

متن کامل

pes of Inactivation in Shaker l6’ Channels: Effects of Alterations in the Carboxy-Terminal Region

Shaker potassium channels inactivate and recover from inactivation with multiple exponential components, suggesting the presence of multiple inactivation processes. We describe two different types of inactivation in Shaker potassium channels. N-type inactivation can occur as rapidly as a few milliseconds and has been shown to involve an intracellular region at the amino-terminal acting as a blo...

متن کامل

Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels.

Voltage-activated K+ channels are a family of closely related membrane proteins that differ in their gating behavior, conductance, and pharmacology. A prominent and physiologically important difference among K+ channels is their rate of inactivation. Inactivation rates range from milliseconds to seconds, and K+ channels with different inactivation properties have very different effects on signa...

متن کامل

Gating of single Shaker potassium channels in Drosophila muscle and in Xenopus oocytes injected with Shaker mRNA.

The voltage-dependent gating mechanism of single A-type potassium channels coded for by the Shaker locus of Drosophila was studied by single-channel recording. A-type channels expressed in Xenopus oocytes injected with Shaker B and Shaker D mRNA exhibited gating and voltage dependence that were qualitatively similar to those of the native Shaker A-types channels from embryonic myotubes. In all ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 250 4980  شماره 

صفحات  -

تاریخ انتشار 1990